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Multi-Source Multi-Relay System Channel

1. Lattice Codes

Definition 1 (Lattice): An n-dimensional lattice Λ ⊂ R
n, is a set of infinite points in R

n such that

if any two points λ1, λ2 ∈ Λ, then λ1 + λ2 ∈ Λ; if λ1 ∈ Λ, then −λ1 ∈ Λ. Every lattice can be written

in terms of a lattice generator matrix G ∈ R
n×n,

Λ = {λ : λ = Gc, c ∈ Z
n} . (1)

Definition 2 (Quantizer): A lattice quantizer is a mapping QΛ : Rn → Λ, that sends a point

x ∈ R
n, to the nearest lattice point λ ∈ Λ in Euclidean distance,

QΛ(x) = argmin
λ∈Λ

||x− λ|| (2)

Definition 3 (Voronoi Region): The Voronoi region VΛ(λ) of a lattice point λ ∈ Λ contains all

the points x ∈ R
n closest to λ in Euclidean distance,

VΛ(λ) = {x : QΛ(x) = λ} . (3)

The fundamental Voronoi region of a lattice Λ is the set of all points x ∈ R
n that are closest to the

origin,

VΛ = VΛ(0) = {x : QΛ(x) = 0} . (4)
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Definition 4 (Modulo): The modulo operation of x ∈ R
n regarding a lattice Λ yields the

quantization error

x mod Λ = x−QΛ(x). (5)

The modulo operation always returns a point in the fundamental Voronoi region VΛ.

Definition 5 (Nested Lattice Codes): If a lattice Λ is a subset of another lattice ΛFine,

Λ ⊂ ΛFine, then Λ is said to be nested in ΛFine. A nested lattice code L is the set of all points of a

fine lattice ΛFine that are within the fundamental Voronoi region VΛ of a coarse lattice Λ,

L = ΛFine ∩ VΛ = {t : t = λ mod Λ, λ ∈ ΛFine} . (6)
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2. System Model

Figure 1: System model of a MSMR network

• L sources are communicating to one destination through N mul-

tiple relays.

• The first phase is for the transmissions from all sources to the

relays.

• In the second phase, the relays compute-and-forward linear com-

binations of original messages towards the destination one by

one.

Figure 2: Time division allocation for one transmission realization
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• Each source has a length-k vector over a finite field Fp = {0, 1, · · · , p− 1},

wl ∈ F
k
p, l = 1, 2, · · · , L, (7)

Encoder Ψl : F
k
p → R

n maps the length-k message wl into a length-n lattice codeword xl ∈ R
n, which

satisfies the power constraint,
1

n
||xl||

2 ≤ P, (8)

for P ≥ 0 and l = 1, 2, · · · , L.

• The m-th relay observes a noisy linear combination of the transmitted signals through the channel at

the end of the first phase,

ym =
L∑

l=1

hmlxl + zm, m = 1, 2, · · · , L, (9)

where hml ∈ R denotes real valued fading channel from Sl to the relay Rm, generated i.i.d. according

to N (0, 1); zm ∈ R
n denotes additive i.i.d. Gaussian noise vector, zm ∼ N (0, In). Let

hm = [hm1, · · · , hmL]
T (10)

denote the vector of channel coefficients from sources to the m-th relay.

Network Coding and Transmission Lab 6



Shanghai Jiao Tong University Multi-Source Multi-Relay System Channel (cntd)

3. Compute-and-Forward Scheme

• In recent worka, Nazer and Gastpar propose the compute-and-forward approach that the relay nodes

exploit the property that any integer combination of lattice points is again a lattice point.

• The m-th relay selects a scalar βm and an integer network coding vector am = [am1, am2, · · · , amL]
T ,

am ∈ Z
L, and attempts to decode the lattice point

∑L
l=1 amlxl from

βmym =

L∑

l=1

βmhmlxl + βmzm (11)

=

L∑

l=1

amlxl +

L∑

l=1

(βmhml − aml)xl + βmzm

︸ ︷︷ ︸

Effective Noise

(12)

• In the finite field, it is equivalent that each relay is desired to reliable recover a linear combination of

the messages,

um =

L⊕

l=1

qmlwl =

[
L∑

l=1

amlwl

]

mod p, (13)

where
⊕

denotes summation over the finite field, qml are coefficients taking values in Fp.

aB. Nazer and M. Gastpar, “Compute-and-forward: harnessing interference through structured codes”, IEEE Trans.

Info. Theory, vol. 57, no. 10, pp. 6463-6486, Oct. 2011.
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• Each relay is equipped with a decoder, Πm : Rn → F
k
p, that maps the observed channel output

ym ∈ R
n to an estimate ûm = Πm(ym) ∈ F

k
p of the message equation um.
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1û

2û
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Figure 3: Compute-and-Forward Diagram
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Theorem 1 : For real-valued AWGN networks with channel coefficient vector hm ∈ R
L and desired

network coding vector am ∈ Z
L, the following computation rate is achievable

Rm(am) = max
βm∈R

1

2
log+

(
P

β2
m + P ||βmhm − am||2

)

. (14)

Theorem 2 : The computation rate given in Theorem 1 is uniquely maximized by choosing βm to be

the MMSE coefficient

βMMSE =
P hT

mam
1 + P ||hm||2

, (15)

which results in a computation rate of

Rm(am) =
1

2
log+

(

||am||
2 −

P (hT
mam)

2

1 + P ||hm||2

)−1

. (16)

Theorem 3 : For a given channel coefficient vector hm = [hm1, hm2, · · · , hmL]
T ∈ R

L, Rm(am) is

maximized by choosing the integer network coding vector am ∈ Z
L as

am = arg min
am∈ZL,am 6=0

(
aTmGmam

)
, (17)

where

Gm
4
= I−

P

1 + P ||hm||2
Hm, (18)

and Hm = [H
(m)
ij ], H

(m)
ij = hmihmj, 1 ≤ i, j ≤ L.
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4. Problem Statement

• Theorems 1-3 only give the optimal integer network coding vector am and achievable computation

rate Rm for one relay and do not take consideration of the overall system constraints.

• The network coding system matrix A at the destination can be denoted as

A = [a1, a2, · · · , aL]
T =











a11 a12 · · · a1L

a21 a22 · · · a2L
...

... . . . ...

aL1 aL2 · · · aLL











. (19)

The destination can solve for the original packets if the network coding system matrix A has full rank

L, i.e. |A| 6= 0. The message rates at the destination will be

RD = min {R1,R2, · · · ,RL} . (20)

• Instead of distributed calculations, we need to optimize the network coding vectors for L relays in a

overall system level, by constructing the full rank network coding matrix A that makes the destination

has maximum message rate.
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• The optimization problem can be described as

R
max
D = arg max

|A|6=0
(min {R1,R2, · · · ,RL})

= arg max
|A|6=0

(

min
m=1,···L

arg max
am∈ZL,am 6=0

1

2
log+

(

||am||
2 −

P (hT
mam)

2

1 + P ||hm||2

)−1
)

.

In other words, we need to find the integer network coding vectors a1, a2, · · · , aL, under the system

level constraint of A have full rank, such that the minimum value of R1, R2, · · · , RL is maximized.

• Equivalently, the optimum network coding integer coefficient matrix A should be

A = arg min
|A|6=0

(

max
m=1,···L

arg min
am∈ZL,am 6=0

(
aTmGmam

)
)

. (21)
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Proposed Strategy

Proposed Strategy:

• In the first step, for relay m, instead of finding one optimal network coding vector am to maximize

its own computation rate, we are trying to find a candidate set,

ΩTmax

m = {a(1)m , a(2)m , · · · , a(Tmax)
m }, (22)

with |ΩTmax

m | = Tmax. The network coding vectors with the top Tmax maximum computation rates for

relay m are within the candidate set ΩTmax

m .

FP Based Candidate Set ΩTmax

m Searching Algorithm 1 is proposed.

• After we get all the candidate vector sets ΩTmax

1 , ΩTmax

2 , · · · , ΩTmax

L , in the second step, we will try to

pick up a1 ∈ ΩTmax

1 , a2 ∈ ΩTmax

2 , · · · , aL ∈ ΩTmax

L , to construct the full rank network coding system

matrix A = [a1, a2, · · · , aL]
T , while in the meantime, the minimum corresponding R1(a1), R2(a2),

· · · , RL(aL) is maximized.

Network Coding System Matrix A Constructing Algorithm 2 is proposed.
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1. Searching Candidate Set ΩTmax

m for One Relay

• According to Theorem 3, it is equivalent to find the set ΩTmax

m with length Tmax, such that those

vectors in ΩTmax

m give the bottom Tmax minimum f(am)
4
= aTmGmam values.

• The searching of candidate set Ωmax
m with fixed length Tmax can be decomposed into following steps.

(1) Enumerate all vectors t ∈ Z
L (t 6= 0) in Ωm, such that f(t) = tTGmt ≤ C for a given positive

constant C, i.e.,

Ωm =
{
t : f(t) = tTGmt ≤ C, t 6= 0, t ∈ Z

L
}
. (23)

(2) Adjust the constant C to guarantee that |Ωm| ≥ Tmax.

(3) Sort all the vectors t1, t2, · · · , t|Ωm| in Ωm in descending order corresponding to the computation

rate value Rm in (16), such that

Rm(t1) ≥ Rm(t2) ≥ · · · ≥ Rm(t|Ωm|). (24)

(4) Pick the first Tmax vectors of Ωm to form the set ΩTmax

m .

Network Coding and Transmission Lab 13
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• The procedure of enumerating all vectors t ∈ Z
L (t 6= 0) in Ωm, such that f(t) = tTGmt ≤ C for a

given positive constant C is based on the Fincke-Pohst Method.

• Operate Cholesky’s factorization of matrix Gm which yields Gm = UTU, where U is an upper

triangular matrix. Let uij, i, j = 1, · · · , L, be the entries of matrix U and t = [t1, t2, · · · , tL]T . Then,

the searching vector t that make tTGmt ≤ C can be expressed as

tTGmt = ||U t||2F =
L∑

i=1

(

uiiti +
L∑

j=i+1

uijtj

)2

=
L∑

i=k

gii

(

ti +
L∑

j=i+1

gijtj

)2

+
k−1∑

i=1

gii

(

ti +
L∑

j=i+1

gijtj

)2

≤ C (25)

where gii = u2ii and gij = uij/uii for i = 1, 2, · · · , L, j = i+ 1, · · · , L.

• Obviously the second term of (25) is non-negative, hence, it is equivalent to consider for every

k = L,L− 1, · · · , 1,
L∑

i=k

gii

(

ti +
L∑

j=i+1

gijtj

)2

≤ C. (26)

Then, we can start work backwards to find the bounds for vector entries tL, tL−1, · · · , t1 one by one.

Network Coding and Transmission Lab 14



Shanghai Jiao Tong University Proposed Strategy (cntd)

Algorithm 1 FP Based Candidate Set ΩTmax

m Searching Algorithm

Input: Matrix Gm, Tmax = |ΩTmax

m |.

Output: The candidate set ΩTmax

m and corresponding computation rate set ΓTmax

m .

Step 1: Calculate the binary quantized vector obtained by applying the direct sign operator of the real

minimum-eigenvalue eigenvector of Gm, denoted as tquant, and set C as

C = tTquantGm tquant. (27)

Step 2: Operate Cholesky’s factorization of matrix Gm yields Gm = UTU, where U is an upper

triangular matrix. Let uij, i, j = 1, · · · , L, denote the entries of matrix U. Set

gii = u2ii, gij = uij/uii, i = 1, · · · , L, j = i+ 1, · · · , L.

Step 3: Search set Ωm =
{
t : tTGmt ≤ C, t 6= 0, t ∈ Z

L
}
according to the following Fincke-Pohst

procedure.

(i) Start from ∆L = 0, CL = C, k = L and Ωm = ∅.

(ii) Set the upper bound UBk and the lower bound LBk as follows

UBk =

⌊ √

Ck

gkk
−∆k

⌋

, LBk =

⌈

−

√

Ck

gkk
−∆k

⌉

,

and tk = LBk − 1.
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(iii) Set tk = tk + 1. For tk ≤ UBk, go to (v); else go to (iv).

(iv) If k = L, terminate and output Ωm; else set k = k + 1 and go to (iii).

(v) For k = 1, go to (vi); else set k = k − 1, and

∆k =
L∑

j=k+1

gkjtj, Ck = Ck+1 − gk+1,k+1 (∆k+1 + tk+1)
2 ,

then go to (ii).

(vi) If t = 0 terminate, else we get a candidate vector t 6= 0 that satisfies all the bounds requirements

and put it inside Ωm, i.e., Ωm = {Ωm, t}. Go to (iii).

Step 4: If |Ωm| < Tmax, set C = 2C and repeat Step 3.

Step 5: Sort all the vectors t1, t2, · · · , t|Ωm| in Ωm in descending order corresponding to the

computation rate value Rm, such that Rm(t1) ≥ Rm(t2) ≥ · · · ≥ Rm(t|Ωm|).

Pick the first Tmax vectors of Ωm to form the set ΩTmax

m and construct the corresponding computation

rate ΓTmax

m as






ΩTmax

m = {t1, t2, · · · , tTmax
},

ΓTmax

m = {Rm(t1),Rm(t2), · · · ,Rm(tTmax
)}.

(28)
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2. Constructing Network Coding Matrix A

• After running our proposed FP Based Candidate Set ΩTmax

m Searching Algorithm for each relay, we

can have two length-Tmax tables.

Table 1: ΓTmax

m = {R(1)
m ,R(2)

m , · · · ,R(Tmax)
m }, (29)

Table 2: ΩTmax

m = {a(1)m , a(2)m , · · · , a(Tmax)
m }. (30)
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Figure 4: Candidate sets and rate tables for all relays

• We will try to pick up a1 ∈ ΩTmax

1 , a2 ∈ ΩTmax

2 , · · · , aL ∈ ΩTmax

L , to construct the system network

coding matrix A = [a1, a2, · · · , aL]T with full rank, at the same time, the minimum corresponding

rate R1(a1), R2(a2), · · · , RL(aL) is maximized.

Network Coding and Transmission Lab 17



Shanghai Jiao Tong University Proposed Strategy (cntd)

• First, we sort the overall computation rate set for all relays {ΓTmax

1 ,ΓTmax

2 , · · · ,ΓTmax

L } in a

descending order into

{γ1, γ2, · · · , γL×Tmax
} : γ1 ≥ γ2 ≥ · · · ≥ γL×Tmax

. (31)

• Then, start from the largest possible achievable rate γindex with index = L (the first L− 1 rates are

obviously not achievable), we will check whether the rate is achievable, which means we can find L

vectors a1 ∈ ΩTmax

1 , a2 ∈ ΩTmax

2 , · · · , aL ∈ ΩTmax

L , such that two constraints need to be satisfied:

(i) The system network coding matrix A is full rank;

(ii) R1(a1), R2(a2), · · · , RL(aL) all greater or equal to γindex.

If we cannot find vectors satisfy those constraints, we move to the next largest possible achievable rate

γindex+1 and check in the same way, and so on, until the first achievable rate is found.

• When we are checking one possible achievable rate γindex, we will reduce/cut the network coding

candidate sets ΩTmax

1 , · · · ,ΩTmax

L → Ωcut
1 , · · · ,Ωcut

L , in which any a1 ∈ Ωcut
1 , any a2 ∈ Ωcut

2 , · · · ,

any aL ∈ Ωcut
L will satisfy that R1(a1), R2(a2), · · · , RL(aL) all greater or equal to γindex.
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• Suppose γindex = R
(n)
m ∈ ΓTmax

m , i.e., γindex is taken from Table 1 of relay m with table index n, then

the network coding vector am is taken from Table 2 with same index n, i.e., am = a
(n)
m ∈ Ωmax

m is fixed

for that relay and Ωcut
m = {am}.

• For other relays i 6= m, the candidate set will reduce/cut to length T cut
i such that R

(1)
i , R

(2)
i , · · · ,

R
(T cut

i
)

i all greater or equal to γindex. Set Ω
cut
i = {a

(1)
i , a

(2)
i , · · · , a

(T cut

i
)

i }.

• We can check the constraint (i) about the system network coding matrix A constructed by

a1 ∈ Ωcut
1 , · · · , aL ∈ Ωcut

L , if it is of full rank, then this rate γindex is achievable.
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Figure 5: Constructing network coding system matrix A
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Algorithm 2 Network Coding System Matrix A Constructing Algorithm

Input: Candidate sets ΩTmax

1 , · · · , ΩTmax

L ; Computation rate sets ΓTmax

1 , · · · , ΓTmax

L .

Output: The network coding system matrix A constructed from a1 ∈ ΩTmax

1 , aL ∈ ΩTmax

L with full rank

that gives the maximum achievable rate Rmax
D .

Step 1: Sort the overall computation rate set for all relays {ΓTmax

1 ,ΓTmax

2 , · · · ,ΓTmax

L } in a descending

order into {γ1, γ2, · · · , γL×Tmax
}, such that γ1 ≥ γ2 ≥ · · · ≥ γL×Tmax

. Initialize index = L.

Step 2: Check whether the rate of γindex is achievable by the following procedure. Suppose

γindex = R
(n)
m ∈ ΓTmax

m . Then, for relay i, the reduced candidate set Ωcut
i , i = 1, 2, · · · , L will be

constructed as follows.

(i) For relay m, set Ωcut
m = {a

(n)
m }.

(ii) For relay i 6= m, compare the value of γindex and the sorted descending set

ΓTmax

i = {R
(1)
i ,R

(2)
i , · · · ,R

(Tmax)
i }, and find all {R

(1)
i , R

(2)
i , · · · , R

(T cut

i
)

i } greater or equal to γindex.

Set Ωcut
i = {a

(1)
i , a

(2)
i , · · · , a

(T cut

i
)

i }.

Step 3: Check every a1 ∈ Ωcut
1 , a2 ∈ Ωcut

2 , · · · , aL ∈ Ωcut
L , until we find one network coding system

matrix A = [a1, a2, · · · , aL]T has full rank, i.e., |A| 6= 0. If so, terminate and output the network

coding system matrix A and the maximum achievable rate Rmax
D = γindex.

Step 4: If for any a1 ∈ Ωcut
1 , a2 ∈ Ωcut

2 , · · · , aL ∈ Ωcut
L , we cannot construct a full rank network coding

system matrix A, then set index = index + 1, go to Step 2.
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A Transparent Realization
• For a three sources three relays system, L = N = 3, the power constraints P = 10dB and Tmax = 5. The channel

coefficient vector hm for each relay is

h1 = [0.9730, 0.4674, 0.5103]T , h2 = [−1.7291, 0.7166,−0.5856]T , h3 = [−0.3912, 1.4407,−0.8115]T .

• Then we can calculated Gm by Theorem 3,

G1 =







0.3794 −0.2981 −0.3254

−0.2981 0.8568 −0.1563

−0.3254 −0.1563 0.8293






,G2 =







0.2424 0.3140 −0.2566

0.3140 0.8699 0.1063

−0.2566 0.1063 0.9131






,G3 =







0.9488 0.1887 −0.1063

0.1887 0.3052 0.3914

−0.1063 0.3914 0.7796






.

• We can see that if we optimize the network coding vectors separately,

aopt
1 = arg min

a1∈ZL,a1 6=0

(
aT
1G1a1

)
= [1 0 0]T ,

aopt
2 = arg min

a2∈ZL,a2 6=0

(
aT
2G2a2

)
= [1 0 0]T ,

aopt
3 = arg min

a3∈ZL,a3 6=0

(
aT
3G3a3

)
= [0 − 1 1]T .

• The corresponding network coding system matrix Aseparate is

Aseparate =







1 0 0

1 0 0

0 −1 1






.

Obviously, optimizing the network coding coefficient vectors separately cannot satisfy the system constraints since the

matrix Aseparate is not full rank.
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• After running our proposed FP Based Candidate Set ΩTmax

m Searching Algorithm 1 for each relay,

ΩTmax

1 =







1 2 1 1 1

0 1 1 0 1

0 1 1 1 0






, ΓTmax

1 = [0.4846, 0.4620, 0.3408, 0.2918, 0.2231] ;

ΩTmax

2 =







1 2 3 −1 −2

0 −1 −1 1 1

0 1 1 0 0






, ΓTmax

2 = [0.7087, 0.6785, 0.5572, 0.3625, 0.2694] ;

ΩTmax

3 =







0 0 1 0 1

−1 1 −2 −2 −3

1 0 1 1 2






, ΓTmax

3 = [0.5987, 0.5935, 0.4384, 0.4165, 0.2902] .

• Now we are running our proposed Network Coding System Matrix A Constructing Algorithm 2. First we sort the overall

computation rate set for all relays {ΓTmax

1 , ΓTmax

2 , ΓTmax

3 } in a descending order into

{0.7087
︸ ︷︷ ︸

γ1

, 0.6785
︸ ︷︷ ︸

γ2

, 0.5987
︸ ︷︷ ︸

γ3

, 0.5935
︸ ︷︷ ︸

γ4

, 0.5572
︸ ︷︷ ︸

γ5

, 0.4846
︸ ︷︷ ︸

γ6

, · · · }. (32)

We will start to check the rate from the third maximum, γ3 = 0.5987, then γ4 = 0.5935, then γ5 = 0.5572, · · · , to see

whether it is achievable. If so, terminate and output; if not, move to the next maximum rate.
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• For example, when we are checking γ4 = 0.5935 = R
(2)
3 , the reduced candidate sets Ωcut

1 , Ωcut
2 , Ωcut

3 with all

corresponding rate greater or equal to γ4 = 0.5935 can be constructed as

Ωcut
1 = ∅, Ωcut

2 =







1 2

0 −1

0 1






, Ωcut

3 =







0

1

0






. (33)

We can easily see no full rank network coding system matrix A can be constructed with a1 ∈ Ωcut
1 , a2 ∈ Ωcut

2 , a3 ∈ Ωcut
3 ,

the rate of γ4 = 0.5935 is not achievable. We will move to γ5 = 0.5572 and check in the same way.

• After running our proposed Network Coding System Matrix A Constructing Algorithm 2, the network coding system

matrix A is finally constructed as

Aproposed =







1 0 0

2 −1 1

0 1 0







(34)

and the maximum achievable rate Rmax
D = 0.4846.
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Experimental Studies

In Fig. 6, we show that if network coding integer vector is optimized separately/locally at each relay, the probability that

the network coding system matrix A is not of full rank, i.e. |A| = 0, in which case the destination actually cannot decode

the original messages efficiently.
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Figure 6: Probability of rank failure with local optimization for L = 2, 3, 4
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Figure 7: Rate comparisons for L = 3 and Tmax = 5
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Figure 8: Rate comparisons for L = 4 and Tmax = 5
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Conclusions

• We consider integer network coding design in a system level over a compute-and-forward

multi-source multi-relay system.

• We propose the Fincke-Pohst based candidate set searching algorithm, to provide a network coding

vector candidate set for each relay with corresponding computation rate in descending order.

• Then, with our proposed network coding system matrix constructing algorithm, we choose network

coding vectors from candidate sets to construct network coding system matrix with full rank, while in

the meantime the transmission rate of the overall system is maximized.
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Thank You!
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